Category Archives: Civil Laser

Circle with Point Laser Diode Module

In today’s rapidly changing science and technology, circular laser module, as an efficient and accurate positioning and identification tool, is gradually showing its unique charm and value in various fields. This article will deeply explore this cutting-edge technology from the aspects of the definition, working principle, application field and future development trend of circular laser module.

Today’s module is quite special. It is not the common circle. Its pattern is a perfect circle with a center point. Let’s check it now.

The head of the laser module can be rotated to adjust the focal length and change the thickness of the laser light. The built-in special lens makes the laser light appear in a circular shape. The power supply has an adjustment knob, which can adjust the voltage to change the laser output power and the brightness of the laser.

You can customize the circular laser of red/green/blue light. The divergence angle used here is 56°, and there is an option of 34°. There is a dot in the center here, or you can customize the center without a dot.

The circular spot at different distances.

red-laser-module-circle-with-point-5

red-laser-module-circle-with-point-6

red-laser-module-circle-with-point-7

red-laser-module-circle-with-point-8

red-laser-module-circle-with-point-10

 

Unlocking High-speed Transmission: In-depth Analysis of 40dBm Single-mode YDFA Technology

Ytterbium-doped fiber amplifier (YDFA) generates gain by pumping ytterbium-doped fiber with semiconductor laser and is used to amplify optical signals in the 1030~1080nm band. The output power is continuously adjustable and has the advantages of high gain and low noise. The desktop YDFA is convenient for experimental operation, and the user can adjust the pump current and output power through the panel buttons. A more compact modular YDFA is also provided to facilitate user system integration.

With the rapid development of optical communication technology, how to effectively enhance the intensity of optical signals and extend the transmission distance has become the focus of the industry. As an important technological innovation in this field, the ytterbium-doped fiber amplifier is gradually becoming a key device in the construction of optical communication networks with its excellent performance and broad application prospects.

The 40dBm ytterbium-doped fiber amplifier uses advanced ytterbium-doped fiber as the gain medium. Ytterbium is widely used in fiber amplifiers due to its unique energy level structure and efficient energy conversion characteristics. When pump light (usually high-power laser) is injected into ytterbium-doped fiber, ytterbium atoms absorb the energy of the pump light and undergo energy level transitions. Subsequently, when the optical signal passes through the fiber, the ytterbium atoms are stimulated to radiate photons of the same frequency as the signal light, thereby amplifying the optical signal.

It is a 1030~1070nm Ytterbium-doped fiber amplifier. The saturated output power is 40dBm @0dBm input. The 40dBm YDFA is a high-power amplifier, with an additional Monitor interface. The Monitor is used to monitor or synchronize signals with low power. And it has built-in cooling fan. Configured with RS2323 interface, available software or control command YDFA.

It supports two working modes of APC/ACC, and the two working modes can be switched by pressing the button. In APC working mode, the output power can be set. In ACC working mode, the working current can be set. Finally, press the middle square button to confirm.

The use of single-mode optical fiber as the transmission medium ensures high-quality transmission of optical signals. Single-mode optical fiber has small intermodal dispersion and is suitable for long-distance, high-speed optical communication applications.

The test data of YDFA-40-SM-B.

The 40dBm ytterbium-doped fiber amplifier has shown strong competitiveness and broad market space in the field of optical communication with its excellent performance and wide application prospects. With the continuous advancement of technology and the continuous growth of application demand, it is believed that this technology will play a more important role in the future and promote the rapid development of the optical communication industry.

460nm Semiconductor Laser Reaches a New Milestone of 60W

With the continuous advancement of science and technology, the 460nm 60W semiconductor laser will show its unique value in more fields. In the future, the laser is expected to play a more important role in biological imaging, optical communication, energy conversion and other fields. At the same time, with the continuous development of materials science and semiconductor technology, we have reason to believe that the performance of semiconductor lasers will be further improved, bringing more surprises and breakthroughs to human society.

As can be seen from the video, for a 60W laser, we need to add a heat sink to the bottom of the power supply, which is an aluminum heat dissipation module with 3 fans. On the back of the laser power supply, there are 3 working modes to choose from: CW/TTL/Analog. The two white ports on the data cable are the ports for the fan power supply, which also need to be plugged in.

460nm-60w-semiconductor-laser-system-1

The customer needs to be able to minimize the laser spot at a specified working distance. A beam expander collimator is added here, and the collimator is not provided by default. In addition, we can also customize the fiber-coupled output.

460nm-60w-semiconductor-laser-system-8

There are multiple groups of laser chips inside the laser. Here, two synchronous data lines are used to control the laser. 60 Watts is a very high power laser, the operator needs to wear laser protective glasses

460nm-60w-semiconductor-laser-system-9

In the field of modern science and technology, semiconductor lasers have become a shining star in the field of optical technology with their unique performance and broad application prospects. Among them, the 460nm 60W semiconductor laser has become the pinnacle of the blue light source field with its high power, high efficiency, high purity and other characteristics.

In short, the 460nm 60W semiconductor laser has become the pinnacle of the blue light source field with its excellent performance and broad application prospects. We have reason to believe that it will continue to play an important role in the future development of science and technology and contribute to the progress of human society.

532nm 5000mW Strong Green Laser Beam Lab Laser System

The 532nm DPSS laser is a high-performance solid-state laser that uses diode pumping technology to produce stable, high-power green light output at a wavelength of 532 nanometers. This laser is widely used in scientific research, industrial processing, biomedicine, and communications for its excellent beam quality and high energy conversion efficiency. Whether high-precision cutting, drilling or fine marking is required, the 532nm 5W DPSS laser can provide a reliable and efficient solution. Its compact design and long-life pump diode make this laser an ideal choice for various applications.

This is a 2024 new model 532nm 5W high quality DPSS laser. The new laser has better heat dissipation and better stability than the 2023 model. It supports both CW and modulation working modes. It is TEM00 spot, and the beam quality is very good. The beam quality test data is around 1.06, which is Near-Perfect Beam Quality.

The laser needs to be preheated for about 20 seconds before laser output can be generated. Adjust the laser output power to the maximum.

The actual test data of laser.

mgl-v-532a-5w-dpss-laser-syaytem-8

mgl-v-532a-5w-dpss-laser-syaytem-9

mgl-v-532a-5w-dpss-laser-syaytem-10

mgl-v-532a-5w-dpss-laser-syaytem-11

mgl-v-532a-5w-dpss-laser-syaytem-12

mgl-v-532a-5w-dpss-laser-syaytem-13

 

Newest! 760nm Laser + Power Supply Integrated Fiber Laser

The 760nm 1500mW fiber laser integrated machineThe 760nm 1500mW fiber laser integrated machine is a laser device that integrates high power, high precision and high stability. It uses a 760nm wavelength laser light source with a maximum output power of up to 1500mW, which can meet the needs of various high-precision and high-demand industrial applications.
is a laser device that integrates high power, high precision and high stability. It uses a 760nm wavelength laser light source with a maximum output power of up to 1500mW, which can meet the needs of various high-precision and high-demand industrial applications.

Newest! 760nm Laser + Power Supply Integrated Fiber Laser

What we brought this time was the 760 1500mW all-in-one fiber laser.  The laser power supply and laser output part are integrated in one chassis. There is a PC/M button on the back of the laser, the default is ‘M’ mode, that is, manual mode. ‘PC’ mode is software control mode, users can add this function. The Modulation interface on the back is used to connect 0~10KHz modulation signal. When there is no signal input, it is CW continuous working mode. Let’s check it now.

The 760nm 1500mW fiber laser integrated machine is a laser device that integrates high power, high precision and high stability. It uses a 760nm wavelength laser light source with a maximum output power of up to 1500mW, which can meet the needs of various high-precision and high-demand industrial applications.

760nm-1500mw-all-in-one-fiber-laser-7

760nm-1500mw-all-in-one-fiber-laser-5

The test data of this 760nm fiber coupled laser.

760nm-1500mw-all-in-one-fiber-laser-10

Laser output power stability diagram.

760nm-1500mw-all-in-one-fiber-laser-11

Graph of laser power and operating current in M-mode.

760nm-1500mw-all-in-one-fiber-laser-12

Output power under software, in PC mode.
760nm-1500mw-all-in-one-fiber-laser-13

The laser Spectral diagram.
760nm-1500mw-all-in-one-fiber-laser-14

 

 

1550nm 1MHz Narrow Linewidth Laser SM Fiber Output

The 1550nm band single-wavelength laser (low power) adopts high-stability semiconductor laser chip, single-mode fiber output, professionally designed drive and temperature control circuit control to ensure the safe and stable operation of the laser.

This is 1550nm SM Fiber laser Benchtop. The output fiber SM or PM is optional, here is equipped with SM fiber. Its laser output power is adjustable, the adjustment accuracy is 1mW, and the adjustment range is 10~100%. And it supports button control and software control. The software control interface.


1550nm-10mw-1mhz-narrow-linewidth-laser-4

The laser test data of this narrow linewidth fiber laser system.

1550nm-10mw-1mhz-narrow-linewidth-laser-7

1550nm-10mw-1mhz-narrow-linewidth-laser-8

1550nm-10mw-1mhz-narrow-linewidth-laser-9

The laser line width test, 0.64 MHz.

1550nm-10mw-1mhz-narrow-linewidth-laser-10

 

 

 

Innovative Progress of 10kW Pulsed Nanosecond Fiber Laser in 1550nm Band

1550nm nanosecond pulse laser system. This high-power nanosecond laser is equipped with 2 fibers. The Ouput fiber below is the normal laser output fiber. The Monitor fiber above is a signal synchronization fiber, used for synchronizing optical signals, with a peak power of about 10mW. The signal can be built-in or external input. The yellow interface here is the signal input interface. This laser uses an external signal. You can only control the current through the button, but not the signal frequency. Let’s check it now.

The pulse width is adjustable from 3 to 200 ns, and the repetition frequency is adjustable from 1 to 3000 kHz.

The laser can be controlled via buttons. It can also be controlled through software, via RS232-USB and PC software link.

1550nm-10kw-pulsed-nanosecond-fiber-laser-4

The  is a shining star in modern industrial technology. Its high power output and precise nanosecond pulse control make it an ideal choice for material processing, scientific research experiments and other fields. With its unique fiber structure, this laser achieves high efficiency, long life and stability, bringing revolutionary changes to industrial production. In the future, it will continue to lead the new trend of laser technology and contribute to scientific and technological progress and industrial development.

The test data of 1550nm nanosecond high-power laser.

1550nm-10kw-pulsed-nanosecond-fiber-laser-8
1550nm-10kw-pulsed-nanosecond-fiber-laser-9
1550nm-10kw-pulsed-nanosecond-fiber-laser-10

1550nm-10kw-pulsed-nanosecond-fiber-laser-11

1550nm-10kw-pulsed-nanosecond-fiber-laser-12

Technical Characteristics and Application Fields of 980nm 500mW TEM00 Laser

In today’s laser technology field, the 980nm 500mW TEM00 semiconductor laser has become the focus of scientific researchers and technicians with its unique optical properties and wide application prospects. This laser provides strong technical support for research and applications in many fields with its high-precision and high-efficiency laser output.

The working wavelength of this laser is set at 980nm, which is a wavelength in the infrared spectrum and has excellent penetration capabilities into biological tissues, so it has extremely high application value in the biomedical field. For example, in photodynamic therapy, laser surgery and fluorescence imaging, 980nm laser can effectively penetrate biological tissue and achieve precise treatment or observation of deep tissue. The laser power is adjustable from 0~500mW. It supports CW & TTL two working modes.

980nm-500mw-round-spot-tem00-laser-7

More importantly, this laser uses TEM00 mode output, the spot size is about 0.7mm. TEM00 mode means that the transverse electric field and magnetic field distribution of the light spot are both zero-order modes, that is, the light spot is the fundamental mode distribution, the spot size is uniform, and the energy is concentrated. This mode of laser has extremely high beam quality and stability, ensuring that the laser maintains a small divergence angle and high energy density during transmission and focusing, thereby achieving more precise laser processing and measurement.

980nm-500mw-round-spot-tem00-laser-5

980nm-500mw-round-spot-tem00-laser-4

To sum up, the 980nm TEM00 semiconductor laser has become a shining pearl in the field of laser technology today with its unique optical properties and wide application prospects. Whether in the fields of biomedicine, materials processing or scientific research, it has shown strong application potential and value.

 

C+L Band 26dBm 400mW Erbium-doped Fiber Amplifier

With the rapid development of information technology, optical fiber communication has become the cornerstone of modern communication networks. In optical fiber communication systems, erbium-doped fiber amplifiers (EDFA) play a vital role, and C+L Band 26dBm erbium-doped fiber amplifier is one of the best.

C+L Band 26dBm Erbium-doped Fiber Amplifier is a high-efficiency fiber amplifier that can achieve efficient signal amplification in the C+L band. Its high power output of 26dBm enables the signal to maintain a high signal-to-noise ratio and stability during transmission, effectively reducing signal attenuation and distortion, thus improving the overall performance of the optical fiber communication system.

This is a C+L Band 26dBm EDFA Amplifier. The wavelength Range is 1528~1563nm & 1570~1603nm. The EDFA supports two working modes, ACC and APC, and the two working modes can be switched. In APC mode, the output power can be adjusted. In ACC mode, the operating current can be adjusted. Our desktop EDFA can be controlled by buttons. PC control software can be connected through RS232 serial port.

The test report of this EDFA.

cl-band-26dbm-sm-edfa-benchtop-8

cl-band-26dbm-sm-edfa-benchtop-10

 

cl-band-26dbm-sm-edfa-benchtop-7
cl-band-26dbm-sm-edfa-benchtop-9

C+L Band 26dBm erbium-doped fiber amplifier is a powerful and excellent optical fiber communication equipment, which plays an irreplaceable role in modern communication networks. With the continuous advancement of technology and the expansion of application fields, it will continue to contribute to the development of optical fiber communications.